Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Adding a time-specific intercept to a fixed-effects ordered logit model panel data*

    Good morning Statlist community,

    I have been trying to get round this problem on my own but have struggled to find the correct syntax, my question is how should I code for a time-specific independent variable in my fixed effects ordinal model.

    I am utilising the feologit and xtreg function for two different dependent variable (one being ordinal, the other continuous) which measure self-perceived employability. I am using panel data and would like to include the national unemployment rate in my model which is constant over time. I originally planned to use the following code

    Code:
    feologit self_percp_nor i.age_cat ned_unemp_rate
    xtreg i257_nor i.age_cat ned_unemp_rate, fe
    self_percp_nor is my ordinal depedent variable and i257_nor is my alternative continuous variable reporting self-perceived employability. Where i.age_cat is an ordinal variable representing age categories and ned_unemp_rate is the dutch unemployment rate.

    I feel like this is might be a mistake and I am wondering if I would be better off treating it as a factor variable (although I am aware these can't contain noninteger values). As I write this I realise I could utilise my _Year variable as a proxy for unemployment rate. However , ideally I would like my model to show that a 1% increase leads to a change of x in self perception and I am struggling to see if this would be possible.

    Dataex code is below:
    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input double _nomem_encr int _Year float(self_percp_nor age_cat) double i257 float ned_unemp_rate
    800009 2009 . .   . 4.4
    800009 2015 . 4   . 6.9
    800009 2013 . .   . 7.3
    800009 2014 . 3   . 7.4
    800009 2008 . .   . 3.7
    800009 2018 . 4 999 3.8
    800009 2016 . 4 999   6
    800009 2010 . .   .   5
    800009 2011 . .   .   5
    800009 2012 . .   . 5.8
    800009 2017 . 4 999 4.9
    800009 2019 . 4   . 3.4
    800015 2008 . .   . 3.7
    800015 2009 . 2   . 4.4
    800015 2011 . 2   .   5
    800015 2017 . 2   . 4.9
    800015 2013 . 2   . 7.3
    800015 2012 . 2   . 5.8
    800015 2016 . 2   .   6
    800015 2015 . 2   . 6.9
    800015 2019 . 3   . 3.4
    800015 2018 . 3   . 3.8
    800015 2014 . 2   . 7.4
    800015 2010 . 2   .   5
    800042 2019 . 2   . 3.4
    800042 2015 . 1 999 6.9
    800042 2011 4 1  80   5
    800042 2009 0 1   0 4.4
    800042 2010 0 1   0   5
    800042 2012 . 1   . 5.8
    800042 2008 0 1   0 3.7
    800042 2014 . 1 999 7.4
    800042 2013 . 1 999 7.3
    800042 2016 . 2 999   6
    800042 2017 . 2   . 4.9
    800042 2018 . 2   . 3.8
    800057 2019 . 2   . 3.4
    800057 2014 . 1   . 7.4
    800057 2013 . 1   . 7.3
    800057 2008 . 1   . 3.7
    800057 2012 . 1   . 5.8
    800057 2017 . 2   . 4.9
    800057 2011 . 1   .   5
    800057 2016 . 2   .   6
    800057 2015 . 2   . 6.9
    800057 2009 . 1   . 4.4
    800057 2018 . 2   . 3.8
    800057 2010 . 1   .   5
    800073 2019 . 4   . 3.4
    800073 2018 . 4   . 3.8
    800073 2015 . .   . 6.9
    800073 2016 . .   .   6
    800073 2017 . 4   . 4.9
    800085 2017 5 2   . 4.9
    800085 2013 . .   . 7.3
    800085 2019 . 2   . 3.4
    800085 2012 . .   . 5.8
    800085 2014 . 1   . 7.4
    800085 2009 . .   . 4.4
    800085 2016 . 1   .   6
    800085 2015 . 1   . 6.9
    800085 2018 . 2   . 3.8
    800085 2010 . .   .   5
    800085 2008 . .   . 3.7
    800085 2011 . .   .   5
    800100 2010 . .   .   5
    800100 2019 . 1   . 3.4
    800100 2014 . .   .   .
    800100 2011 . .   .   5
    800100 2018 4 1  80 3.8
    800100 2015 . .   .   .
    800100 2008 . .   . 3.7
    800100 2016 . 1 999   6
    800100 2012 . .   . 5.8
    800100 2017 3 1 999 4.9
    800100 2013 . .   . 7.3
    800100 2009 . .   . 4.4
    800119 2013 . 4 999 7.3
    800119 2011 0 4   0   5
    800119 2014 . 4   . 7.4
    800119 2009 0 3   0 4.4
    800119 2015 . 4   . 6.9
    800119 2010 0 3   0   5
    800119 2008 0 3   0 3.7
    800119 2012 . 4   . 5.8
    800125 2011 . .   .   5
    800125 2012 . .   . 5.8
    800125 2009 6 2 100 4.4
    800125 2013 . .   . 7.3
    800125 2008 3 2  35 3.7
    800125 2010 . 2   .   5
    800125 2014 . .   . 7.4
    800131 2015 . .   .   .
    800131 2016 . 4   .   6
    800131 2011 . 3   .   5
    800131 2009 . 3   . 4.4
    800131 2014 . 4   . 7.4
    800131 2012 . 3   . 5.8
    800131 2013 . 3   . 7.3
    800131 2017 . 4   . 4.9
    end
    format %ty _Year
    label values age_cat agecat_2lb
    label def agecat_2lb 1 "26-39", modify
    label def agecat_2lb 2 "40-54", modify
    label def agecat_2lb 3 "50-59", modify
    label def agecat_2lb 4 "60-67", modify
    label values i257 ci14g257
    label def ci14g257 999 "n/a since I am not looking for a job", modify
    Thank you,

    Hugo
Working...
X